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Abstract 
Integrating qualitative reasoning with large-scale knowledge 
bases provides new challenges.  This paper outlines work in 
progress on developing a new model formulation system to 
support qualitative reasoning via compositional modeling 
that can operate in an environment with over a million 
available facts.  Three ideas are discussed: Exploiting 
microtheories for modeling, using non-monotonic inference, 
and speculative inference.  An implemented algorithm 
which runs on QP benchmark examples is outlined, and 
planned extensions are discussed.    

 Introduction 
Most qualitative reasoning systems have been built as 
stand-alone pieces of software, as systems or modules 
which assume a specialized input language for models 
and/or domain theories.  Today, the existence of large-
scale knowledge  bases such as OpenCyc, and the potential 
for building even larger knowledge bases via the Semantic 
Web, provide a new set of opportunities and challenges for 
qualitative reasoning.   The opportunities include the 
ability to explore more directly how qualitative reasoning 
can be used in common sense reasoning.  Common sense 
reasoning, after all, involves tying qualitative reasoning 
into the wide expanse of everyday knowledge of kitchens, 
swimming pools, parking lots, and cactus.  The challenges 
include the need to keep model formulation tractable in the 
face of millions of potentially relevant facts.  Reasoning 
techniques which have commonly been used in the past, 
such as using an ATMS (Falkenhainer & Forbus, 1991) or 
assuming that the structure of domain theories is highly 
constrained (Nayak, 1994), do not seem likely to scale. 
 
This paper describes work in progress on a new model 
formulation algorithm that is implemented as a service 
within the context of a reasoning system that uses a large-
scale knowledge base.  First the relevant properties of the 
knowledge base, reasoning system, and compositional 
modeling are reviewed.  Next the key ideas of the approach 
are laid out, illustrated by examples.  Finally, future work 
is discussed. 

Background 
Large-scale knowledge bases. We use the Cyc ontology1 
and KB contents in our research, augmented by an 
ontology for QP theory (Forbus, 1984) and support for 
analogical reasoning.  Concepts are modeled in the KB as 
collections, which are linked into a hierarchy by the 
genls relation.   The OpenCyc KB contents we are using, 
for example, include over 58,000 collections.    A large 
number of predicates are defined (>14,000), whose 
argument signatures are specified in terms of these 
collections.  These concepts include many concepts that 
are directly relevant to traditional qualitative models (e.g., 
substances, types of quantities) as well as many more 
concepts which are not obviously relevant (e.g., comic 
book characters, social relationships, mental states).  Thus 
it provides a good example of an off-the-shelf knowledge 
resource which can be harnessed for qualitative reasoning. 
 
The contents of the knowledge base are partitioned into 
microtheories.  Microtheories provide a way of dealing 
with context.  For example, people are quite capable of 
answering questions and making predictions about the 
fictional worlds of TV series and novels, while at the same 
time knowing that they do not exist.  Microtheories provide 
a means of dealing with such inconsistent contexts (e.g., 
the MiddleEarthMt and TeletubbiesMt 
microtheories in OpenCyc).  Every fact is in at least one 
microtheory.  Microtheories themselves are related by 
genlMt, i.e., (genlMt AMt BMt) indicates that every 
fact believed in BMt is available in AMt.  genlMt 
statements themselves are global, i.e. believed in every 
microtheory.   
 
The logical environment of any operation consists of the 
microtheory it occurs in plus the set of microtheories that 
can be reached from it via genlMt relationships.  This can 
provide considerable filtering: For example, the logical 
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environment used in the experiments describe here 
includes only 640,452 facts out of the 1,722,715 facts 
currently available in the knowledge base.   
  

Reasoning system.  While we use the contents of 
OpenCyc or ResearchCyc, depending on the project, we 
use our own reasoning engine instead of Cycorp’s.  There 
are a variety of reasons for this: Ours is optimized for our 
purposes, and we have full source code access, for 
example.  Our FIRE reasoning system implements the 
knowledge base via a persistent-object database2.  The KB  
includes a form of TMS that enables efficient pattern 
matching retrieval while respecting logical environments.  
The working memory uses a logic-based TMS for 
propositional reasoning.  FIRE has five primary reasoning 
mechanisms, but for our purposes only two are relevant: 
Ask provides access to the knowledge base and performs 
“simple” inferences, using procedural attachments to 
predicates to implement specialized computations.  Query 
performs backchaining, using Horn clause axioms selected 
from the KB based on the current logical environment.  
Thus the logical environment of a computation can be used 
to filter both the available data and the available rules to 
operate over this data.  

 
Compositional Modeling.  Knowledge about a domain 

is encoded in model fragments, which are logically 
quantified pieces of knowledge – think of frames or 
schemas – which are instantiated in the process of building 
models to reason about a specific scenario.  Assembling a 
model from fragments is typically constrained by a task, 
often consisting of a quantity and some form of query 
about it.  A domain theory consists of a set of model 
fragments, and often includes assumption classes.  
Assumption classes provide a mutually exclusive and 
collectively exhaustive set of choices for how to model 
something, when certain relevance conditions hold.  

                                                
2 Franz, Inc.’s Allegrocache database. 

Domain theories can consist of models at multiple levels of 
granularity and multiple, mutually inconsistent 
perspectives, if they rely on assumption classes to keep 
incoherent models from being constructed.  Consequently, 
assembling a model given a scenario and a task is 
potentially quite complicated. 

Microtheories and Modeling 
Microtheories make both building compositional domain 
theories and performing model formulation easier in some 
ways.  Domain theories can be stored in microtheories, or 
as a whole graph of microtheories, potentially 
decomposing them into modules that could be combined to 
create logical environments that contained all and only the 
knowledge needed for particular tasks.   Scenario 
descriptions can be stored as microtheories as well, along 
with models built from them for particular purposes.  
Figure 1 illustrates. 
 
The reasoning for model formulation is conducted in the 
logical environment of microtheory which will contain that 
model (e.g., Model1Mt).  In the example of Figure 1, all 
of the model fragments and knowledge available from 
DomainTheoryMt, ScenarioMt, and Asns1Mt will 
be accessible in creating the model in Model1Mt.  The 
alternate model being built in Model2Mt will be using 
most of the same knowledge, but the assumptions in 
Asns2Mt instead of Asns1Mt.   
 
This scheme makes it straightforward to compute and 
compare multiple models for the same scenario without 
interference.  However, there are subtleties.  The point of 
using a large-scale knowledge base is to have access to a 
lot of knowledge, so domain theory microtheories typically 
will inherit from other microtheories to supply background 
knowledge.  Consider this model fragment, from a 
benchmark QP domain theory: 
 
ContainedStuffPossibility: 
 Participants: 
  containerOf: ?can, Container 
  phaseOf: ?phase, MatterTypeByPhysicalState 
  substanceOf:?sub, 
            ChemicalCompoundTypeByChemicalSpecies 
 Constraints: None. 
 Conditions: 
   (canContainSubstance ?can ?phase ?sub) 
 Consequences: 
   (hasQuantity ?self 
       (AmountOfFn ?sub ?phase ?can)) 
   (qpGreaterOrEqualTo 
       (AmountOfFn ?sub ?phase ?can) Zero) 
 
The OpenCyc KB has six types of matter (solid, liquid, 
gas, plasma, Fermonic and Bose/Einstein condensate) and 
knows about 590 chemical compounds.  Thus for every 
instance of a container in a scenario, unless more careful 
control is exerted, there will be 3,540 model fragments of 
this type instantiated.  Reorganizing the microtheory 

 
 
 
 
 
 
 
 
 
 
Figure 1: Microtheory scheme for model formulation  
Two distinct models (Model1Mt, Model2Mt) are based 
on the same domain theory and scenario, but different 
modeling assumptions (Asns1Mt, Asns2Mt).   The 
arrows indicate genlMt statements.  
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contents is not a practical solution even in a curated 
knowledge base: There are 2,836 non-trivial microtheories 
in OpenCyc, for instance. Moreover, the point of the 
Semantic Web is to dynamically exploit existing resources 
from multiple sources, which makes reorganization 
impossible.  Model formulation algorithms themselves 
must provide ways to stay focused.   
 
Our solution to this problem is to expand the idea of 
consider assumptions from compositional modeling to 
include a new predicate, considerEntity, a unary 
predicate indicating that its argument represents an entity 
that should be included in the model under construction.  
The set of considerEntity assertions derivable within a 
logical environment  thus determines what entities will be 
allowed into the model.  As will be seen shortly, 
considerEntity statements are never introduced 
directly by modelers.  Instead, they are inferred from a 
lower-level statement, in order to support non-monotonic 
reasoning.   

Non-monotonic reasoning 
Sometimes modeling knowledge concerns what should be 
ignored (e.g., evaporation while drinking coffee) rather 
than what should be considered.  This needs to be handled 
at the level of entities, model fragments, and particular 
instances of model fragments.  We discuss each in turn. 
 

Suppressing entities.  Scenarios sometimes contain 
entities that are irrelevant for a particular analysis, so there 
must be some means for suppressing the consideration of 
entities.  The unary predicate ignoreEntity indicates that 
its argument represents an entity that must not be included 
in a model.  It is a contradiction for considerEntity and 
ignoreEntity to be true of the same entity within a logical 
environment.  Consequently, the derivation of 
considerEntity rests on a more primitive statement, 
includeEntity, and a non-monotonic derivation as 
follows: 

 
(<== (considerEntity ?e) 
     (includeEntity ?e) 
     (uninferredSentence (ignoreEntity ?e))) 
 
In FIRE, the predicate uninferredSentence is true only if 
its argument cannot be derived within the current logical 
environment.  Thus logical contradictions are avoided, and 
default inclusion can be overridden by an inference that 
something should be ignored. 
 

Suppressing model fragments.  In cases where an 
entire type of phenomena should be ignored (e.g. ignoring 
thermal properties means suppressing heat flow and other 
processes that involve heat and temperature), the unary 
predicates considerMF and ignoreMF are defined and used 
analogously to considerEntity and ignoreEntity, with 
ignoreMF trumping considerMF.  Such queries are used 

during model formulation when deriving the list of model 
fragments to look for. 

 
Suppressing model fragment instances.  Sometimes 

even finer-grained control is needed in building a model.  
For example, when considering where smoke goes if we 
burn something while cooking, we may need to include the 
air in the room in our model, but at the same time we may 
want to ignore transfers of heat to the air, while 
considering transfers of heat from the burners of the stove 
to the pots and pans on them.  The binary predicates 
considerMFInstance and ignoreMFInstance provide this 
level of control.  The first argument is a model fragment 
type (e.g. HeatFlowProcess), and the second argument is a 
binding list of participants for a proposed instance of that 
process.  As with the other non-montonic predicates, 
ignoring trumps considering: 

 
(<== (considerMFInstance ?mft ?bindings) 
     (uninferredSentence  
       (ignoreMFInstance ?mft ?bindings)) 
 
(<== (ignoreMFInstance ?mf ?given-bindings) 
     (ignoreMFInstance ?mf ?other-bindings) 
     (subsetOfBindings ?other-bindings  
                       ?given-bindings)) 
 
Notice that the second rule allows concise constraints like 
“ignore heat flow to the atmosphere” to be expressed, since 
only the binding of the destination of heat flow to the 
atmosphere needs to be included.   The test for 
considerMFInstance  is used as the last step just 
before a model fragment instance is created, so that there is 
the most information available upon which to base the 
decision.  As with the other consider/ignore pairs, this 
pattern enables the declarative specification of rules for 
ignoring phenomena, but here, the properties of the 
proposed binding list can be used to rule out instances 
involving specific entities. 

Speculative Inference 
QR systems have tended to treat model formulation as a 
distinct phase of reasoning from deriving conclusions with 
a model, because most qualitative reasoning requires 
closed-world assumptions about the relevant phenomena in 
order to construct the appropriate network of constraints. 
For example, boiling is only possible when a contained 
liquid is present. To determine whether boiling might 
occur in a pot requires determining that water could be in 
that pot. Thus all of the model fragments that will go into a 
model, whether or not they hold in the initial state(s), must 
be derived up front.  In Gizmo and QPE, two 
implementations of QP theory, this was done by antecedent 
rules which triggered on facts simply being in the database, 
whether or not they were believed.  This is essentially a 
form of speculative inference, where mentioning a fact is 
used as a heuristic that it might become true.  This solution 



does not scale well because such antecedent rules have 
indefinite temporal extent, which means they will continue 
to clog memory even when they are no longer relevant.  
Consequently, we have developed a different approach. 
   
For every microtheory M representing a model under 
construction, a new microtheory is defined: 
 

(ModelFormulationScratchpadMtFn M) 
 
This microtheory has M as its sole genlMt, and is used as 
a scratchpad by asserting as true every potential 
consequence and condition of every model fragment 
instance that gets created.  For example, if mf-0 is an 
instance of ContainedStuffPossibility, then the 
appropriate hasQuantity,  qpGreaterThanOrEqualTo, and 
canContainSubstance statements will be believed to be 
true in the scratchpad.  Given that processes often come in 
opponent pairs, this scratchpad will quickly become 
contradictory.  That doesn’t matter, since FIRE does not 
aggressively seek out contradictions by default – a choice 
made because of the inefficiency of complete reasoning.  
This gives us exactly the kind of speculative reasoning we 
want: By using this scratchpad for model formulation 
queries, we will get answers based on the possibility of 
propositions being true.  In general this will lead to over-
generation, because combinations of facts believed in the 
scratchpad may be mutually incompatible in any consistent 
logical environment.  This is a relatively small price to pay, 
given the alternative of having to reconsider possible new 
model fragments after essentially every reasoning step. 

Algorithm 
We have combined these ideas to create a model 
formulation algorithm for QP models that can operate over 
large-scale knowledge bases.  The basic model formulation 
algorithm is: 
1. Gather relevant model fragment types, by querying for 

considerMF. 
2. Sort model fragment types according to dependency 

a. If MFa introduces a statement that unifies with 
a participant constraint of MFb, then MFb 
depends on MFa, and so instances of MFa 
should be sought before instances of MFb. 

3. For each relevant model fragment type, find instances by 
a. Find participants by searching for relevant 

entities (i.e., those that satisfy 
considerEntity) which satisfy the 
participant constraints, using speculative 
inference. 

b. Query for considerMFInstance. If not true, 
ignore this instance. 

c. Otherwise, instantiate the model fragment 
instance, asserting appropriate logic in the 
model microtheory, and asserting as true the 
consequences, conditions, and participant 
constraints in the scratchpad microtheory. 

 
The dependency sort in Step 2 is an optimization made 
possible by speculative inference. Again, it can 
overgenerate, but no more so than prior antecedent-rule 
implementations.  Experience with prior implementations 
indicates that this is typically a small price to pay. 
 
At present the basic algorithm described above has been 
implemented, and operates correctly on the standard 
benchmark examples for QP theory implementations.  We 
are planning to use it to replace the application-specific 
model formulation algorithms that we have used in our 
Companion experiments (Forbus, Klenk, & Hinrichs, 
2009) and with CogSketch (Wetzel & Forbus, 2009). 

Discussion 
Integrating qualitative reasoning into large-scale 
knowledge-based systems provides interesting new 
challenges. For example, as we have seen, model 
formulation must be very carefully controlled to maintain 
focus. Such systems also provide new opportunities via 
new resources, including support for microtheories to 
provide a notion of logical environment and non-
monotonic reasoning to support default reasoning with 
overrides.  These facilities combined with using 
microtheories to make a scratchpad for the kind of 
speculative inference needed in model formulation, 
provide a robust foundation for a simple and elegant model 
formulation algorithm.   
 
While the basic algorithm above is already sufficient for 
supporting our recent and current projects, it does not 
capture most of the more sophisticated model formulation 
ideas explored in the 1990s.  Those ideas were, in some 
sense, ahead of their time, since they presumed efforts to 
build large-scale domain theories.  With the widespread 
availability of OpenCyc and the rise of the Semantic Web, 
it is time to revisit those ideas and rework them to fit our 
new knowledge-rich environment.  This paper represents 
the first step in that process.   
 
There are several directions to explore next.  First, we plan 
to add support for assumption classes, to allow reasoning 
with multiple perspective and multiple granularity domain 
theories. We suspect that the criteria for evaluating model 
quality used previously were somewhat oversimplified, 
since they were one-dimensional (fewest assumptions 
(Falkenhainer & Forbus 1991), lowest cost assumptions 
(Nayak 1994), single direct influence (Rickel & Porter, 
1997). Types of available data, desired form of answers, 
reasoning cost, and explanatory clarity all seem like 
relevant factors, whose relative importance will vary with 
task. The more extensive ontologies in large knowledge-
based systems provide potentially useful infrastructure for 
this. Accumulating and reusing modeling assumptions 
from experience (Falkenhainer, 1992; Klenk et al 2008) 
provides another source of reasoning we plan to 



incorporate.  To given these ideas a more complete test, we 
are planning to rebuild the large-scale steam plant model 
(Falkenhainer & Forbus, 1991) to test reasoning with 
assumption classes, and to extend the reasoning to include 
time-scale abstraction (Rickel & Porter, 1997), using a port 
of their Botany Knowledge Base for testing. 
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